use crate::error::{CompileError, CompileErrorType};
pub use crate::mode::Mode;
use crate::output_stream::{CodeObjectStream, OutputStream};
use crate::peephole::PeepholeOptimizer;
use crate::symboltable::{
make_symbol_table, statements_to_symbol_table, Symbol, SymbolScope, SymbolTable,
};
use itertools::Itertools;
use num_complex::Complex64;
use rustpython_bytecode::bytecode::{self, CallType, CodeObject, Instruction, Label, Varargs};
use rustpython_parser::{ast, parser};
type BasicOutputStream = PeepholeOptimizer<CodeObjectStream>;
struct Compiler<O: OutputStream = BasicOutputStream> {
output_stack: Vec<O>,
symbol_table_stack: Vec<SymbolTable>,
nxt_label: usize,
source_path: Option<String>,
current_source_location: ast::Location,
current_qualified_path: Option<String>,
ctx: CompileContext,
optimize: u8,
}
#[derive(Clone, Copy)]
struct CompileContext {
in_loop: bool,
func: FunctionContext,
}
#[derive(Clone, Copy)]
enum FunctionContext {
NoFunction,
Function,
AsyncFunction,
}
impl CompileContext {
fn in_func(self) -> bool {
match self.func {
FunctionContext::NoFunction => false,
_ => true,
}
}
}
pub fn compile(
source: &str,
mode: Mode,
source_path: String,
optimize: u8,
) -> Result<CodeObject, CompileError> {
match mode {
Mode::Exec => {
let ast = parser::parse_program(source)?;
compile_program(ast, source_path.clone(), optimize)
}
Mode::Eval => {
let statement = parser::parse_statement(source)?;
compile_statement_eval(statement, source_path.clone(), optimize)
}
Mode::Single => {
let ast = parser::parse_program(source)?;
compile_program_single(ast, source_path.clone(), optimize)
}
}
.map_err(|mut err| {
err.update_source_path(&source_path);
err
})
}
fn with_compiler(
source_path: String,
optimize: u8,
f: impl FnOnce(&mut Compiler) -> Result<(), CompileError>,
) -> Result<CodeObject, CompileError> {
let mut compiler = Compiler::new(optimize);
compiler.source_path = Some(source_path);
compiler.push_new_code_object("<module>".to_owned());
f(&mut compiler)?;
let code = compiler.pop_code_object();
trace!("Compilation completed: {:?}", code);
Ok(code)
}
pub fn compile_program(
ast: ast::Program,
source_path: String,
optimize: u8,
) -> Result<CodeObject, CompileError> {
with_compiler(source_path, optimize, |compiler| {
let symbol_table = make_symbol_table(&ast)?;
compiler.compile_program(&ast, symbol_table)
})
}
pub fn compile_statement_eval(
statement: Vec<ast::Statement>,
source_path: String,
optimize: u8,
) -> Result<CodeObject, CompileError> {
with_compiler(source_path, optimize, |compiler| {
let symbol_table = statements_to_symbol_table(&statement)?;
compiler.compile_statement_eval(&statement, symbol_table)
})
}
pub fn compile_program_single(
ast: ast::Program,
source_path: String,
optimize: u8,
) -> Result<CodeObject, CompileError> {
with_compiler(source_path, optimize, |compiler| {
let symbol_table = make_symbol_table(&ast)?;
compiler.compile_program_single(&ast, symbol_table)
})
}
impl<O> Default for Compiler<O>
where
O: OutputStream,
{
fn default() -> Self {
Compiler::new(0)
}
}
impl<O: OutputStream> Compiler<O> {
fn new(optimize: u8) -> Self {
Compiler {
output_stack: Vec::new(),
symbol_table_stack: Vec::new(),
nxt_label: 0,
source_path: None,
current_source_location: ast::Location::default(),
current_qualified_path: None,
ctx: CompileContext {
in_loop: false,
func: FunctionContext::NoFunction,
},
optimize,
}
}
fn push_output(&mut self, code: CodeObject) {
self.output_stack.push(code.into());
}
fn push_new_code_object(&mut self, obj_name: String) {
let line_number = self.get_source_line_number();
self.push_output(CodeObject::new(
Default::default(),
Vec::new(),
Varargs::None,
Vec::new(),
Varargs::None,
self.source_path.clone().unwrap(),
line_number,
obj_name,
));
}
fn pop_code_object(&mut self) -> CodeObject {
self.output_stack.pop().unwrap().into()
}
fn compile_program(
&mut self,
program: &ast::Program,
symbol_table: SymbolTable,
) -> Result<(), CompileError> {
let size_before = self.output_stack.len();
self.symbol_table_stack.push(symbol_table);
let (statements, doc) = get_doc(&program.statements);
if let Some(value) = doc {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String { value },
});
self.emit(Instruction::StoreName {
name: "__doc__".to_owned(),
scope: bytecode::NameScope::Global,
});
}
self.compile_statements(statements)?;
assert_eq!(self.output_stack.len(), size_before);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::ReturnValue);
Ok(())
}
fn compile_program_single(
&mut self,
program: &ast::Program,
symbol_table: SymbolTable,
) -> Result<(), CompileError> {
self.symbol_table_stack.push(symbol_table);
let mut emitted_return = false;
for (i, statement) in program.statements.iter().enumerate() {
let is_last = i == program.statements.len() - 1;
if let ast::StatementType::Expression { ref expression } = statement.node {
self.compile_expression(expression)?;
if is_last {
self.emit(Instruction::Duplicate);
self.emit(Instruction::PrintExpr);
self.emit(Instruction::ReturnValue);
emitted_return = true;
} else {
self.emit(Instruction::PrintExpr);
}
} else {
self.compile_statement(&statement)?;
}
}
if !emitted_return {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::ReturnValue);
}
Ok(())
}
fn compile_statement_eval(
&mut self,
statements: &[ast::Statement],
symbol_table: SymbolTable,
) -> Result<(), CompileError> {
self.symbol_table_stack.push(symbol_table);
for statement in statements {
if let ast::StatementType::Expression { ref expression } = statement.node {
self.compile_expression(expression)?;
} else {
return Err(CompileError {
statement: None,
error: CompileErrorType::ExpectExpr,
location: statement.location.clone(),
source_path: None,
});
}
}
self.emit(Instruction::ReturnValue);
Ok(())
}
fn compile_statements(&mut self, statements: &[ast::Statement]) -> Result<(), CompileError> {
for statement in statements {
self.compile_statement(statement)?
}
Ok(())
}
fn scope_for_name(&self, name: &str) -> bytecode::NameScope {
let symbol = self.lookup_name(name);
match symbol.scope {
SymbolScope::Global => bytecode::NameScope::Global,
SymbolScope::Nonlocal => bytecode::NameScope::NonLocal,
SymbolScope::Unknown => bytecode::NameScope::Free,
SymbolScope::Local => bytecode::NameScope::Free,
}
}
fn load_name(&mut self, name: &str) {
let scope = self.scope_for_name(name);
self.emit(Instruction::LoadName {
name: name.to_owned(),
scope,
});
}
fn store_name(&mut self, name: &str) {
let scope = self.scope_for_name(name);
self.emit(Instruction::StoreName {
name: name.to_owned(),
scope,
});
}
fn compile_statement(&mut self, statement: &ast::Statement) -> Result<(), CompileError> {
trace!("Compiling {:?}", statement);
self.set_source_location(&statement.location);
use ast::StatementType::*;
match &statement.node {
Import { names } => {
for name in names {
self.emit(Instruction::Import {
name: Some(name.symbol.clone()),
symbols: vec![],
level: 0,
});
if let Some(alias) = &name.alias {
for part in name.symbol.split('.').skip(1) {
self.emit(Instruction::LoadAttr {
name: part.to_owned(),
});
}
self.store_name(alias);
} else {
self.store_name(name.symbol.split('.').next().unwrap());
}
}
}
ImportFrom {
level,
module,
names,
} => {
let import_star = names.iter().any(|n| n.symbol == "*");
if import_star {
self.emit(Instruction::Import {
name: module.clone(),
symbols: vec!["*".to_owned()],
level: *level,
});
self.emit(Instruction::ImportStar);
} else {
let from_list = names.iter().map(|n| n.symbol.clone()).collect();
self.emit(Instruction::Import {
name: module.clone(),
symbols: from_list,
level: *level,
});
for name in names {
self.emit(Instruction::ImportFrom {
name: name.symbol.to_owned(),
});
if let Some(alias) = &name.alias {
self.store_name(alias);
} else {
self.store_name(&name.symbol);
}
}
self.emit(Instruction::Pop);
}
}
Expression { expression } => {
self.compile_expression(expression)?;
self.emit(Instruction::Pop);
}
Global { .. } | Nonlocal { .. } => {
}
If { test, body, orelse } => {
let end_label = self.new_label();
match orelse {
None => {
self.compile_jump_if(test, false, end_label)?;
self.compile_statements(body)?;
self.set_label(end_label);
}
Some(statements) => {
let else_label = self.new_label();
self.compile_jump_if(test, false, else_label)?;
self.compile_statements(body)?;
self.emit(Instruction::Jump { target: end_label });
self.set_label(else_label);
self.compile_statements(statements)?;
}
}
self.set_label(end_label);
}
While { test, body, orelse } => self.compile_while(test, body, orelse)?,
With {
is_async,
items,
body,
} => {
let is_async = *is_async;
let end_labels = items
.iter()
.map(|item| {
let end_label = self.new_label();
self.compile_expression(&item.context_expr)?;
if is_async {
self.emit(Instruction::BeforeAsyncWith);
self.emit(Instruction::GetAwaitable);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::YieldFrom);
self.emit(Instruction::SetupAsyncWith { end: end_label });
} else {
self.emit(Instruction::SetupWith { end: end_label });
}
match &item.optional_vars {
Some(var) => {
self.compile_store(var)?;
}
None => {
self.emit(Instruction::Pop);
}
}
Ok(end_label)
})
.collect::<Result<Vec<_>, CompileError>>()?;
self.compile_statements(body)?;
for end_label in end_labels {
self.emit(Instruction::PopBlock);
self.emit(Instruction::EnterFinally);
self.set_label(end_label);
self.emit(Instruction::WithCleanupStart);
if is_async {
self.emit(Instruction::GetAwaitable);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::YieldFrom);
}
self.emit(Instruction::WithCleanupFinish);
}
}
For {
is_async,
target,
iter,
body,
orelse,
} => self.compile_for(target, iter, body, orelse, *is_async)?,
Raise { exception, cause } => match exception {
Some(value) => {
self.compile_expression(value)?;
match cause {
Some(cause) => {
self.compile_expression(cause)?;
self.emit(Instruction::Raise { argc: 2 });
}
None => {
self.emit(Instruction::Raise { argc: 1 });
}
}
}
None => {
self.emit(Instruction::Raise { argc: 0 });
}
},
Try {
body,
handlers,
orelse,
finalbody,
} => self.compile_try_statement(body, handlers, orelse, finalbody)?,
FunctionDef {
is_async,
name,
args,
body,
decorator_list,
returns,
} => {
self.compile_function_def(name, args, body, decorator_list, returns, *is_async)?;
}
ClassDef {
name,
body,
bases,
keywords,
decorator_list,
} => self.compile_class_def(name, body, bases, keywords, decorator_list)?,
Assert { test, msg } => {
if self.optimize == 0 {
let end_label = self.new_label();
self.compile_jump_if(test, true, end_label)?;
self.emit(Instruction::LoadName {
name: String::from("AssertionError"),
scope: bytecode::NameScope::Global,
});
match msg {
Some(e) => {
self.compile_expression(e)?;
self.emit(Instruction::CallFunction {
typ: CallType::Positional(1),
});
}
None => {
self.emit(Instruction::CallFunction {
typ: CallType::Positional(0),
});
}
}
self.emit(Instruction::Raise { argc: 1 });
self.set_label(end_label);
}
}
Break => {
if !self.ctx.in_loop {
return Err(CompileError {
statement: None,
error: CompileErrorType::InvalidBreak,
location: statement.location.clone(),
source_path: None,
});
}
self.emit(Instruction::Break);
}
Continue => {
if !self.ctx.in_loop {
return Err(CompileError {
statement: None,
error: CompileErrorType::InvalidContinue,
location: statement.location.clone(),
source_path: None,
});
}
self.emit(Instruction::Continue);
}
Return { value } => {
if !self.ctx.in_func() {
return Err(CompileError {
statement: None,
error: CompileErrorType::InvalidReturn,
location: statement.location.clone(),
source_path: None,
});
}
match value {
Some(v) => {
self.compile_expression(v)?;
}
None => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
}
}
self.emit(Instruction::ReturnValue);
}
Assign { targets, value } => {
self.compile_expression(value)?;
for (i, target) in targets.iter().enumerate() {
if i + 1 != targets.len() {
self.emit(Instruction::Duplicate);
}
self.compile_store(target)?;
}
}
AugAssign { target, op, value } => {
self.compile_expression(target)?;
self.compile_expression(value)?;
self.compile_op(op, true);
self.compile_store(target)?;
}
AnnAssign {
target,
annotation,
value,
} => self.compile_annotated_assign(target, annotation, value)?,
Delete { targets } => {
for target in targets {
self.compile_delete(target)?;
}
}
Pass => {
}
}
Ok(())
}
fn compile_delete(&mut self, expression: &ast::Expression) -> Result<(), CompileError> {
match &expression.node {
ast::ExpressionType::Identifier { name } => {
self.emit(Instruction::DeleteName {
name: name.to_owned(),
});
}
ast::ExpressionType::Attribute { value, name } => {
self.compile_expression(value)?;
self.emit(Instruction::DeleteAttr {
name: name.to_owned(),
});
}
ast::ExpressionType::Subscript { a, b } => {
self.compile_expression(a)?;
self.compile_expression(b)?;
self.emit(Instruction::DeleteSubscript);
}
ast::ExpressionType::Tuple { elements } => {
for element in elements {
self.compile_delete(element)?;
}
}
_ => {
return Err(CompileError {
statement: None,
error: CompileErrorType::Delete(expression.name()),
location: self.current_source_location.clone(),
source_path: None,
});
}
}
Ok(())
}
fn enter_function(&mut self, name: &str, args: &ast::Parameters) -> Result<(), CompileError> {
let have_defaults = !args.defaults.is_empty();
if have_defaults {
let size = args.defaults.len();
for element in &args.defaults {
self.compile_expression(element)?;
}
self.emit(Instruction::BuildTuple {
size,
unpack: false,
});
}
let mut num_kw_only_defaults = 0;
for (kw, default) in args.kwonlyargs.iter().zip(&args.kw_defaults) {
if let Some(default) = default {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: kw.arg.clone(),
},
});
self.compile_expression(default)?;
num_kw_only_defaults += 1;
}
}
if num_kw_only_defaults > 0 {
self.emit(Instruction::BuildMap {
size: num_kw_only_defaults,
unpack: false,
for_call: false,
});
}
let mut flags = bytecode::CodeFlags::default();
if have_defaults {
flags |= bytecode::CodeFlags::HAS_DEFAULTS;
}
if num_kw_only_defaults > 0 {
flags |= bytecode::CodeFlags::HAS_KW_ONLY_DEFAULTS;
}
let line_number = self.get_source_line_number();
self.push_output(CodeObject::new(
flags,
args.args.iter().map(|a| a.arg.clone()).collect(),
compile_varargs(&args.vararg),
args.kwonlyargs.iter().map(|a| a.arg.clone()).collect(),
compile_varargs(&args.kwarg),
self.source_path.clone().unwrap(),
line_number,
name.to_owned(),
));
self.enter_scope();
Ok(())
}
fn prepare_decorators(
&mut self,
decorator_list: &[ast::Expression],
) -> Result<(), CompileError> {
for decorator in decorator_list {
self.compile_expression(decorator)?;
}
Ok(())
}
fn apply_decorators(&mut self, decorator_list: &[ast::Expression]) {
for _ in decorator_list {
self.emit(Instruction::CallFunction {
typ: CallType::Positional(1),
});
}
}
fn compile_try_statement(
&mut self,
body: &[ast::Statement],
handlers: &[ast::ExceptHandler],
orelse: &Option<ast::Suite>,
finalbody: &Option<ast::Suite>,
) -> Result<(), CompileError> {
let mut handler_label = self.new_label();
let finally_handler_label = self.new_label();
let else_label = self.new_label();
if finalbody.is_some() {
self.emit(Instruction::SetupFinally {
handler: finally_handler_label,
});
}
self.emit(Instruction::SetupExcept {
handler: handler_label,
});
self.compile_statements(body)?;
self.emit(Instruction::PopBlock);
self.emit(Instruction::Jump { target: else_label });
self.set_label(handler_label);
handler_label = self.new_label();
for handler in handlers {
if let Some(exc_type) = &handler.typ {
self.emit(Instruction::Duplicate);
self.compile_expression(exc_type)?;
self.emit(Instruction::CompareOperation {
op: bytecode::ComparisonOperator::ExceptionMatch,
});
self.emit(Instruction::JumpIfFalse {
target: handler_label,
});
if let Some(alias) = &handler.name {
self.store_name(alias);
} else {
self.emit(Instruction::Pop);
}
} else {
self.emit(Instruction::Pop);
}
self.compile_statements(&handler.body)?;
self.emit(Instruction::PopException);
if finalbody.is_some() {
self.emit(Instruction::PopBlock);
self.emit(Instruction::EnterFinally);
}
self.emit(Instruction::Jump {
target: finally_handler_label,
});
self.set_label(handler_label);
handler_label = self.new_label();
}
self.emit(Instruction::Jump {
target: handler_label,
});
self.set_label(handler_label);
self.emit(Instruction::Raise { argc: 0 });
self.set_label(else_label);
if let Some(statements) = orelse {
self.compile_statements(statements)?;
}
if finalbody.is_some() {
self.emit(Instruction::PopBlock);
self.emit(Instruction::EnterFinally);
}
self.set_label(finally_handler_label);
if let Some(statements) = finalbody {
self.compile_statements(statements)?;
self.emit(Instruction::EndFinally);
}
Ok(())
}
fn compile_function_def(
&mut self,
name: &str,
args: &ast::Parameters,
body: &[ast::Statement],
decorator_list: &[ast::Expression],
returns: &Option<ast::Expression>,
is_async: bool,
) -> Result<(), CompileError> {
let prev_ctx = self.ctx;
self.ctx = CompileContext {
in_loop: false,
func: if is_async {
FunctionContext::AsyncFunction
} else {
FunctionContext::Function
},
};
let qualified_name = self.create_qualified_name(name, "");
let old_qualified_path = self.current_qualified_path.take();
self.current_qualified_path = Some(self.create_qualified_name(name, ".<locals>"));
self.prepare_decorators(decorator_list)?;
self.enter_function(name, args)?;
let (body, doc_str) = get_doc(body);
self.compile_statements(body)?;
match body.last().map(|s| &s.node) {
Some(ast::StatementType::Return { .. }) => {
}
_ => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::ReturnValue);
}
}
let mut code = self.pop_code_object();
self.leave_scope();
let mut num_annotations = 0;
if let Some(annotation) = returns {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: "return".to_owned(),
},
});
self.compile_expression(annotation)?;
num_annotations += 1;
}
for arg in args.args.iter() {
if let Some(annotation) = &arg.annotation {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: arg.arg.to_owned(),
},
});
self.compile_expression(&annotation)?;
num_annotations += 1;
}
}
if num_annotations > 0 {
code.flags |= bytecode::CodeFlags::HAS_ANNOTATIONS;
self.emit(Instruction::BuildMap {
size: num_annotations,
unpack: false,
for_call: false,
});
}
if is_async {
code.flags |= bytecode::CodeFlags::IS_COROUTINE;
}
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Code {
code: Box::new(code),
},
});
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: qualified_name,
},
});
self.emit(Instruction::MakeFunction);
self.store_docstring(doc_str);
self.apply_decorators(decorator_list);
self.store_name(name);
self.current_qualified_path = old_qualified_path;
self.ctx = prev_ctx;
Ok(())
}
fn compile_class_def(
&mut self,
name: &str,
body: &[ast::Statement],
bases: &[ast::Expression],
keywords: &[ast::Keyword],
decorator_list: &[ast::Expression],
) -> Result<(), CompileError> {
let prev_ctx = self.ctx;
self.ctx = CompileContext {
func: FunctionContext::NoFunction,
in_loop: false,
};
let qualified_name = self.create_qualified_name(name, "");
let old_qualified_path = self.current_qualified_path.take();
self.current_qualified_path = Some(qualified_name.clone());
self.prepare_decorators(decorator_list)?;
self.emit(Instruction::LoadBuildClass);
let line_number = self.get_source_line_number();
self.push_output(CodeObject::new(
Default::default(),
vec![],
Varargs::None,
vec![],
Varargs::None,
self.source_path.clone().unwrap(),
line_number,
name.to_owned(),
));
self.enter_scope();
let (new_body, doc_str) = get_doc(body);
self.emit(Instruction::LoadName {
name: "__name__".to_owned(),
scope: bytecode::NameScope::Global,
});
self.emit(Instruction::StoreName {
name: "__module__".to_owned(),
scope: bytecode::NameScope::Free,
});
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: qualified_name.clone(),
},
});
self.emit(Instruction::StoreName {
name: "__qualname__".to_owned(),
scope: bytecode::NameScope::Free,
});
self.compile_statements(new_body)?;
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::ReturnValue);
let mut code = self.pop_code_object();
code.flags &= !bytecode::CodeFlags::NEW_LOCALS;
self.leave_scope();
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Code {
code: Box::new(code),
},
});
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: name.to_owned(),
},
});
self.emit(Instruction::MakeFunction);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: qualified_name,
},
});
for base in bases {
self.compile_expression(base)?;
}
if !keywords.is_empty() {
let mut kwarg_names = vec![];
for keyword in keywords {
if let Some(name) = &keyword.name {
kwarg_names.push(bytecode::Constant::String {
value: name.to_owned(),
});
} else {
panic!("name must be set");
}
self.compile_expression(&keyword.value)?;
}
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Tuple {
elements: kwarg_names,
},
});
self.emit(Instruction::CallFunction {
typ: CallType::Keyword(2 + keywords.len() + bases.len()),
});
} else {
self.emit(Instruction::CallFunction {
typ: CallType::Positional(2 + bases.len()),
});
}
self.store_docstring(doc_str);
self.apply_decorators(decorator_list);
self.store_name(name);
self.current_qualified_path = old_qualified_path;
self.ctx = prev_ctx;
Ok(())
}
fn store_docstring(&mut self, doc_str: Option<String>) {
self.emit(Instruction::Duplicate);
self.emit(Instruction::LoadConst {
value: match doc_str {
Some(doc) => bytecode::Constant::String { value: doc },
None => bytecode::Constant::None,
},
});
self.emit(Instruction::Rotate { amount: 2 });
self.emit(Instruction::StoreAttr {
name: "__doc__".to_owned(),
});
}
fn compile_while(
&mut self,
test: &ast::Expression,
body: &[ast::Statement],
orelse: &Option<Vec<ast::Statement>>,
) -> Result<(), CompileError> {
let start_label = self.new_label();
let else_label = self.new_label();
let end_label = self.new_label();
self.emit(Instruction::SetupLoop {
start: start_label,
end: end_label,
});
self.set_label(start_label);
self.compile_jump_if(test, false, else_label)?;
let was_in_loop = self.ctx.in_loop;
self.ctx.in_loop = true;
self.compile_statements(body)?;
self.ctx.in_loop = was_in_loop;
self.emit(Instruction::Jump {
target: start_label,
});
self.set_label(else_label);
self.emit(Instruction::PopBlock);
if let Some(orelse) = orelse {
self.compile_statements(orelse)?;
}
self.set_label(end_label);
Ok(())
}
fn compile_for(
&mut self,
target: &ast::Expression,
iter: &ast::Expression,
body: &[ast::Statement],
orelse: &Option<Vec<ast::Statement>>,
is_async: bool,
) -> Result<(), CompileError> {
let start_label = self.new_label();
let else_label = self.new_label();
let end_label = self.new_label();
self.emit(Instruction::SetupLoop {
start: start_label,
end: end_label,
});
self.compile_expression(iter)?;
if is_async {
let check_asynciter_label = self.new_label();
let body_label = self.new_label();
self.emit(Instruction::GetAIter);
self.set_label(start_label);
self.emit(Instruction::SetupExcept {
handler: check_asynciter_label,
});
self.emit(Instruction::GetANext);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::YieldFrom);
self.compile_store(target)?;
self.emit(Instruction::PopBlock);
self.emit(Instruction::Jump { target: body_label });
self.set_label(check_asynciter_label);
self.emit(Instruction::Duplicate);
self.emit(Instruction::LoadName {
name: "StopAsyncIteration".to_owned(),
scope: bytecode::NameScope::Global,
});
self.emit(Instruction::CompareOperation {
op: bytecode::ComparisonOperator::ExceptionMatch,
});
self.emit(Instruction::JumpIfTrue { target: else_label });
self.emit(Instruction::Raise { argc: 0 });
let was_in_loop = self.ctx.in_loop;
self.ctx.in_loop = true;
self.set_label(body_label);
self.compile_statements(body)?;
self.ctx.in_loop = was_in_loop;
} else {
self.emit(Instruction::GetIter);
self.set_label(start_label);
self.emit(Instruction::ForIter { target: else_label });
self.compile_store(target)?;
let was_in_loop = self.ctx.in_loop;
self.ctx.in_loop = true;
self.compile_statements(body)?;
self.ctx.in_loop = was_in_loop;
}
self.emit(Instruction::Jump {
target: start_label,
});
self.set_label(else_label);
self.emit(Instruction::PopBlock);
if let Some(orelse) = orelse {
self.compile_statements(orelse)?;
}
self.set_label(end_label);
if is_async {
self.emit(Instruction::Pop);
}
Ok(())
}
fn compile_chained_comparison(
&mut self,
vals: &[ast::Expression],
ops: &[ast::Comparison],
) -> Result<(), CompileError> {
assert!(!ops.is_empty());
assert_eq!(vals.len(), ops.len() + 1);
let to_operator = |op: &ast::Comparison| match op {
ast::Comparison::Equal => bytecode::ComparisonOperator::Equal,
ast::Comparison::NotEqual => bytecode::ComparisonOperator::NotEqual,
ast::Comparison::Less => bytecode::ComparisonOperator::Less,
ast::Comparison::LessOrEqual => bytecode::ComparisonOperator::LessOrEqual,
ast::Comparison::Greater => bytecode::ComparisonOperator::Greater,
ast::Comparison::GreaterOrEqual => bytecode::ComparisonOperator::GreaterOrEqual,
ast::Comparison::In => bytecode::ComparisonOperator::In,
ast::Comparison::NotIn => bytecode::ComparisonOperator::NotIn,
ast::Comparison::Is => bytecode::ComparisonOperator::Is,
ast::Comparison::IsNot => bytecode::ComparisonOperator::IsNot,
};
self.compile_expression(&vals[0])?;
let break_label = self.new_label();
let last_label = self.new_label();
let ops_slice = &ops[0..ops.len()];
let vals_slice = &vals[1..ops.len()];
for (op, val) in ops_slice.iter().zip(vals_slice.iter()) {
self.compile_expression(val)?;
self.emit(Instruction::Duplicate);
self.emit(Instruction::Rotate { amount: 3 });
self.emit(Instruction::CompareOperation {
op: to_operator(op),
});
self.emit(Instruction::JumpIfFalseOrPop {
target: break_label,
});
}
self.compile_expression(vals.last().unwrap())?;
self.emit(Instruction::CompareOperation {
op: to_operator(ops.last().unwrap()),
});
self.emit(Instruction::Jump { target: last_label });
self.set_label(break_label);
self.emit(Instruction::Rotate { amount: 2 });
self.emit(Instruction::Pop);
self.set_label(last_label);
Ok(())
}
fn compile_annotated_assign(
&mut self,
target: &ast::Expression,
annotation: &ast::Expression,
value: &Option<ast::Expression>,
) -> Result<(), CompileError> {
if let Some(value) = value {
self.compile_expression(value)?;
self.compile_store(target)?;
}
self.compile_expression(annotation)?;
if let ast::ExpressionType::Identifier { name } = &target.node {
self.emit(Instruction::LoadName {
name: String::from("__annotations__"),
scope: bytecode::NameScope::Local,
});
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: name.to_owned(),
},
});
self.emit(Instruction::StoreSubscript);
} else {
self.emit(Instruction::Pop);
}
Ok(())
}
fn compile_store(&mut self, target: &ast::Expression) -> Result<(), CompileError> {
match &target.node {
ast::ExpressionType::Identifier { name } => {
self.store_name(name);
}
ast::ExpressionType::Subscript { a, b } => {
self.compile_expression(a)?;
self.compile_expression(b)?;
self.emit(Instruction::StoreSubscript);
}
ast::ExpressionType::Attribute { value, name } => {
self.compile_expression(value)?;
self.emit(Instruction::StoreAttr {
name: name.to_owned(),
});
}
ast::ExpressionType::List { elements } | ast::ExpressionType::Tuple { elements } => {
let mut seen_star = false;
for (i, element) in elements.iter().enumerate() {
if let ast::ExpressionType::Starred { .. } = &element.node {
if seen_star {
return Err(CompileError {
statement: None,
error: CompileErrorType::StarArgs,
location: self.current_source_location.clone(),
source_path: None,
});
} else {
seen_star = true;
self.emit(Instruction::UnpackEx {
before: i,
after: elements.len() - i - 1,
});
}
}
}
if !seen_star {
self.emit(Instruction::UnpackSequence {
size: elements.len(),
});
}
for element in elements {
if let ast::ExpressionType::Starred { value } = &element.node {
self.compile_store(value)?;
} else {
self.compile_store(element)?;
}
}
}
_ => {
return Err(CompileError {
statement: None,
error: CompileErrorType::Assign(target.name()),
location: self.current_source_location.clone(),
source_path: None,
});
}
}
Ok(())
}
fn compile_op(&mut self, op: &ast::Operator, inplace: bool) {
let i = match op {
ast::Operator::Add => bytecode::BinaryOperator::Add,
ast::Operator::Sub => bytecode::BinaryOperator::Subtract,
ast::Operator::Mult => bytecode::BinaryOperator::Multiply,
ast::Operator::MatMult => bytecode::BinaryOperator::MatrixMultiply,
ast::Operator::Div => bytecode::BinaryOperator::Divide,
ast::Operator::FloorDiv => bytecode::BinaryOperator::FloorDivide,
ast::Operator::Mod => bytecode::BinaryOperator::Modulo,
ast::Operator::Pow => bytecode::BinaryOperator::Power,
ast::Operator::LShift => bytecode::BinaryOperator::Lshift,
ast::Operator::RShift => bytecode::BinaryOperator::Rshift,
ast::Operator::BitOr => bytecode::BinaryOperator::Or,
ast::Operator::BitXor => bytecode::BinaryOperator::Xor,
ast::Operator::BitAnd => bytecode::BinaryOperator::And,
};
self.emit(Instruction::BinaryOperation { op: i, inplace });
}
fn compile_jump_if(
&mut self,
expression: &ast::Expression,
condition: bool,
target_label: Label,
) -> Result<(), CompileError> {
match &expression.node {
ast::ExpressionType::BoolOp { op, values } => {
match op {
ast::BooleanOperator::And => {
if condition {
let end_label = self.new_label();
let (last_value, values) = values.split_last().unwrap();
for value in values {
self.compile_jump_if(value, false, end_label)?;
}
self.compile_jump_if(last_value, true, target_label)?;
self.set_label(end_label);
} else {
for value in values {
self.compile_jump_if(value, false, target_label)?;
}
}
}
ast::BooleanOperator::Or => {
if condition {
for value in values {
self.compile_jump_if(value, true, target_label)?;
}
} else {
let end_label = self.new_label();
let (last_value, values) = values.split_last().unwrap();
for value in values {
self.compile_jump_if(value, true, end_label)?;
}
self.compile_jump_if(last_value, false, target_label)?;
self.set_label(end_label);
}
}
}
}
ast::ExpressionType::Unop {
op: ast::UnaryOperator::Not,
a,
} => {
self.compile_jump_if(a, !condition, target_label)?;
}
_ => {
self.compile_expression(expression)?;
if condition {
self.emit(Instruction::JumpIfTrue {
target: target_label,
});
} else {
self.emit(Instruction::JumpIfFalse {
target: target_label,
});
}
}
}
Ok(())
}
fn compile_bool_op(
&mut self,
op: &ast::BooleanOperator,
values: &[ast::Expression],
) -> Result<(), CompileError> {
let end_label = self.new_label();
let (last_value, values) = values.split_last().unwrap();
for value in values {
self.compile_expression(value)?;
match op {
ast::BooleanOperator::And => {
self.emit(Instruction::JumpIfFalseOrPop { target: end_label });
}
ast::BooleanOperator::Or => {
self.emit(Instruction::JumpIfTrueOrPop { target: end_label });
}
}
}
self.compile_expression(last_value)?;
self.set_label(end_label);
Ok(())
}
fn compile_dict(
&mut self,
pairs: &[(Option<ast::Expression>, ast::Expression)],
) -> Result<(), CompileError> {
let mut size = 0;
let mut has_unpacking = false;
for (is_unpacking, subpairs) in &pairs.iter().group_by(|e| e.0.is_none()) {
if is_unpacking {
for (_, value) in subpairs {
self.compile_expression(value)?;
size += 1;
}
has_unpacking = true;
} else {
let mut subsize = 0;
for (key, value) in subpairs {
if let Some(key) = key {
self.compile_expression(key)?;
self.compile_expression(value)?;
subsize += 1;
}
}
self.emit(Instruction::BuildMap {
size: subsize,
unpack: false,
for_call: false,
});
size += 1;
}
}
if size == 0 {
self.emit(Instruction::BuildMap {
size,
unpack: false,
for_call: false,
});
}
if size > 1 || has_unpacking {
self.emit(Instruction::BuildMap {
size,
unpack: true,
for_call: false,
});
}
Ok(())
}
fn compile_expression(&mut self, expression: &ast::Expression) -> Result<(), CompileError> {
trace!("Compiling {:?}", expression);
self.set_source_location(&expression.location);
use ast::ExpressionType::*;
match &expression.node {
Call {
function,
args,
keywords,
} => self.compile_call(function, args, keywords)?,
BoolOp { op, values } => self.compile_bool_op(op, values)?,
Binop { a, op, b } => {
self.compile_expression(a)?;
self.compile_expression(b)?;
self.compile_op(op, false);
}
Subscript { a, b } => {
self.compile_expression(a)?;
self.compile_expression(b)?;
self.emit(Instruction::Subscript);
}
Unop { op, a } => {
self.compile_expression(a)?;
let i = match op {
ast::UnaryOperator::Pos => bytecode::UnaryOperator::Plus,
ast::UnaryOperator::Neg => bytecode::UnaryOperator::Minus,
ast::UnaryOperator::Not => bytecode::UnaryOperator::Not,
ast::UnaryOperator::Inv => bytecode::UnaryOperator::Invert,
};
let i = Instruction::UnaryOperation { op: i };
self.emit(i);
}
Attribute { value, name } => {
self.compile_expression(value)?;
self.emit(Instruction::LoadAttr {
name: name.to_owned(),
});
}
Compare { vals, ops } => {
self.compile_chained_comparison(vals, ops)?;
}
Number { value } => {
let const_value = match value {
ast::Number::Integer { value } => bytecode::Constant::Integer {
value: value.clone(),
},
ast::Number::Float { value } => bytecode::Constant::Float { value: *value },
ast::Number::Complex { real, imag } => bytecode::Constant::Complex {
value: Complex64::new(*real, *imag),
},
};
self.emit(Instruction::LoadConst { value: const_value });
}
List { elements } => {
let size = elements.len();
let must_unpack = self.gather_elements(elements)?;
self.emit(Instruction::BuildList {
size,
unpack: must_unpack,
});
}
Tuple { elements } => {
let size = elements.len();
let must_unpack = self.gather_elements(elements)?;
self.emit(Instruction::BuildTuple {
size,
unpack: must_unpack,
});
}
Set { elements } => {
let size = elements.len();
let must_unpack = self.gather_elements(elements)?;
self.emit(Instruction::BuildSet {
size,
unpack: must_unpack,
});
}
Dict { elements } => {
self.compile_dict(elements)?;
}
Slice { elements } => {
let size = elements.len();
for element in elements {
self.compile_expression(element)?;
}
self.emit(Instruction::BuildSlice { size });
}
Yield { value } => {
if !self.ctx.in_func() {
return Err(CompileError {
statement: Option::None,
error: CompileErrorType::InvalidYield,
location: self.current_source_location.clone(),
source_path: Option::None,
});
}
self.mark_generator();
match value {
Some(expression) => self.compile_expression(expression)?,
Option::None => self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
}),
};
self.emit(Instruction::YieldValue);
}
Await { value } => {
self.compile_expression(value)?;
self.emit(Instruction::GetAwaitable);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::YieldFrom);
}
YieldFrom { value } => {
self.mark_generator();
self.compile_expression(value)?;
self.emit(Instruction::GetIter);
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
self.emit(Instruction::YieldFrom);
}
True => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Boolean { value: true },
});
}
False => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Boolean { value: false },
});
}
None => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::None,
});
}
Ellipsis => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Ellipsis,
});
}
String { value } => {
self.compile_string(value)?;
}
Bytes { value } => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Bytes {
value: value.clone(),
},
});
}
Identifier { name } => {
self.load_name(name);
}
Lambda { args, body } => {
let prev_ctx = self.ctx;
self.ctx = CompileContext {
in_loop: false,
func: FunctionContext::Function,
};
let name = "<lambda>".to_owned();
self.enter_function(&name, args)?;
self.compile_expression(body)?;
self.emit(Instruction::ReturnValue);
let code = self.pop_code_object();
self.leave_scope();
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Code {
code: Box::new(code),
},
});
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String { value: name },
});
self.emit(Instruction::MakeFunction);
self.ctx = prev_ctx;
}
Comprehension { kind, generators } => {
self.compile_comprehension(kind, generators)?;
}
Starred { .. } => {
return Err(CompileError {
statement: Option::None,
error: CompileErrorType::SyntaxError(std::string::String::from(
"Invalid starred expression",
)),
location: self.current_source_location.clone(),
source_path: Option::None,
});
}
IfExpression { test, body, orelse } => {
let no_label = self.new_label();
let end_label = self.new_label();
self.compile_jump_if(test, false, no_label)?;
self.compile_expression(body)?;
self.emit(Instruction::Jump { target: end_label });
self.set_label(no_label);
self.compile_expression(orelse)?;
self.set_label(end_label);
}
}
Ok(())
}
fn compile_keywords(&mut self, keywords: &[ast::Keyword]) -> Result<(), CompileError> {
let mut size = 0;
for (is_unpacking, subkeywords) in &keywords.iter().group_by(|e| e.name.is_none()) {
if is_unpacking {
for keyword in subkeywords {
self.compile_expression(&keyword.value)?;
size += 1;
}
} else {
let mut subsize = 0;
for keyword in subkeywords {
if let Some(name) = &keyword.name {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: name.to_owned(),
},
});
self.compile_expression(&keyword.value)?;
subsize += 1;
}
}
self.emit(Instruction::BuildMap {
size: subsize,
unpack: false,
for_call: false,
});
size += 1;
}
}
if size > 1 {
self.emit(Instruction::BuildMap {
size,
unpack: true,
for_call: true,
});
}
Ok(())
}
fn compile_call(
&mut self,
function: &ast::Expression,
args: &[ast::Expression],
keywords: &[ast::Keyword],
) -> Result<(), CompileError> {
self.compile_expression(function)?;
let count = args.len() + keywords.len();
let must_unpack = self.gather_elements(args)?;
let has_double_star = keywords.iter().any(|k| k.name.is_none());
if must_unpack || has_double_star {
self.emit(Instruction::BuildTuple {
size: args.len(),
unpack: must_unpack,
});
if !keywords.is_empty() {
self.compile_keywords(keywords)?;
self.emit(Instruction::CallFunction {
typ: CallType::Ex(true),
});
} else {
self.emit(Instruction::CallFunction {
typ: CallType::Ex(false),
});
}
} else {
if !keywords.is_empty() {
let mut kwarg_names = vec![];
for keyword in keywords {
if let Some(name) = &keyword.name {
kwarg_names.push(bytecode::Constant::String {
value: name.to_owned(),
});
} else {
panic!("name must be set");
}
self.compile_expression(&keyword.value)?;
}
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Tuple {
elements: kwarg_names,
},
});
self.emit(Instruction::CallFunction {
typ: CallType::Keyword(count),
});
} else {
self.emit(Instruction::CallFunction {
typ: CallType::Positional(count),
});
}
}
Ok(())
}
fn gather_elements(&mut self, elements: &[ast::Expression]) -> Result<bool, CompileError> {
let has_stars = elements.iter().any(|e| {
if let ast::ExpressionType::Starred { .. } = &e.node {
true
} else {
false
}
});
for element in elements {
if let ast::ExpressionType::Starred { value } = &element.node {
self.compile_expression(value)?;
} else {
self.compile_expression(element)?;
if has_stars {
self.emit(Instruction::BuildTuple {
size: 1,
unpack: false,
});
}
}
}
Ok(has_stars)
}
fn compile_comprehension(
&mut self,
kind: &ast::ComprehensionKind,
generators: &[ast::Comprehension],
) -> Result<(), CompileError> {
assert!(!generators.is_empty());
let name = match kind {
ast::ComprehensionKind::GeneratorExpression { .. } => "<genexpr>",
ast::ComprehensionKind::List { .. } => "<listcomp>",
ast::ComprehensionKind::Set { .. } => "<setcomp>",
ast::ComprehensionKind::Dict { .. } => "<dictcomp>",
}
.to_owned();
let line_number = self.get_source_line_number();
self.push_output(CodeObject::new(
Default::default(),
vec![".0".to_owned()],
Varargs::None,
vec![],
Varargs::None,
self.source_path.clone().unwrap(),
line_number,
name.clone(),
));
self.enter_scope();
match kind {
ast::ComprehensionKind::GeneratorExpression { .. } => {}
ast::ComprehensionKind::List { .. } => {
self.emit(Instruction::BuildList {
size: 0,
unpack: false,
});
}
ast::ComprehensionKind::Set { .. } => {
self.emit(Instruction::BuildSet {
size: 0,
unpack: false,
});
}
ast::ComprehensionKind::Dict { .. } => {
self.emit(Instruction::BuildMap {
size: 0,
unpack: false,
for_call: false,
});
}
}
let mut loop_labels = vec![];
for generator in generators {
if generator.is_async {
unimplemented!("async for comprehensions");
}
if loop_labels.is_empty() {
self.emit(Instruction::LoadName {
name: String::from(".0"),
scope: bytecode::NameScope::Local,
});
} else {
self.compile_expression(&generator.iter)?;
self.emit(Instruction::GetIter);
}
let start_label = self.new_label();
let end_label = self.new_label();
loop_labels.push((start_label, end_label));
self.emit(Instruction::SetupLoop {
start: start_label,
end: end_label,
});
self.set_label(start_label);
self.emit(Instruction::ForIter { target: end_label });
self.compile_store(&generator.target)?;
for if_condition in &generator.ifs {
self.compile_jump_if(if_condition, false, start_label)?
}
}
match kind {
ast::ComprehensionKind::GeneratorExpression { element } => {
self.compile_expression(element)?;
self.mark_generator();
self.emit(Instruction::YieldValue);
self.emit(Instruction::Pop);
}
ast::ComprehensionKind::List { element } => {
self.compile_expression(element)?;
self.emit(Instruction::ListAppend {
i: 1 + generators.len(),
});
}
ast::ComprehensionKind::Set { element } => {
self.compile_expression(element)?;
self.emit(Instruction::SetAdd {
i: 1 + generators.len(),
});
}
ast::ComprehensionKind::Dict { key, value } => {
self.compile_expression(value)?;
self.compile_expression(key)?;
self.emit(Instruction::MapAdd {
i: 1 + generators.len(),
});
}
}
for (start_label, end_label) in loop_labels.iter().rev() {
self.emit(Instruction::Jump {
target: *start_label,
});
self.set_label(*end_label);
self.emit(Instruction::PopBlock);
}
self.emit(Instruction::ReturnValue);
let code = self.pop_code_object();
self.leave_scope();
self.emit(Instruction::LoadConst {
value: bytecode::Constant::Code {
code: Box::new(code),
},
});
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String { value: name },
});
self.emit(Instruction::MakeFunction);
self.compile_expression(&generators[0].iter)?;
self.emit(Instruction::GetIter);
self.emit(Instruction::CallFunction {
typ: CallType::Positional(1),
});
Ok(())
}
fn compile_string(&mut self, string: &ast::StringGroup) -> Result<(), CompileError> {
if let Some(value) = try_get_constant_string(string) {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String { value },
});
} else {
match string {
ast::StringGroup::Joined { values } => {
for value in values {
self.compile_string(value)?;
}
self.emit(Instruction::BuildString { size: values.len() })
}
ast::StringGroup::Constant { value } => {
self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: value.to_owned(),
},
});
}
ast::StringGroup::FormattedValue {
value,
conversion,
spec,
} => {
match spec {
Some(spec) => self.compile_string(spec)?,
None => self.emit(Instruction::LoadConst {
value: bytecode::Constant::String {
value: String::new(),
},
}),
};
self.compile_expression(value)?;
self.emit(Instruction::FormatValue {
conversion: conversion.map(compile_conversion_flag),
});
}
}
}
Ok(())
}
fn enter_scope(&mut self) {
let table = self
.symbol_table_stack
.last_mut()
.unwrap()
.sub_tables
.remove(0);
self.symbol_table_stack.push(table);
}
fn leave_scope(&mut self) {
let table = self.symbol_table_stack.pop().unwrap();
assert!(table.sub_tables.is_empty());
}
fn lookup_name(&self, name: &str) -> &Symbol {
let symbol_table = self.symbol_table_stack.last().unwrap();
symbol_table.lookup(name).expect(
"The symbol must be present in the symbol table, even when it is undefined in python.",
)
}
fn emit(&mut self, instruction: Instruction) {
let location = compile_location(&self.current_source_location);
self.current_output().emit(instruction, location);
}
fn current_output(&mut self) -> &mut O {
self.output_stack
.last_mut()
.expect("No OutputStream on stack")
}
fn new_label(&mut self) -> Label {
let l = Label::new(self.nxt_label);
self.nxt_label += 1;
l
}
fn set_label(&mut self, label: Label) {
self.current_output().set_label(label)
}
fn set_source_location(&mut self, location: &ast::Location) {
self.current_source_location = location.clone();
}
fn get_source_line_number(&mut self) -> usize {
self.current_source_location.row()
}
fn create_qualified_name(&self, name: &str, suffix: &str) -> String {
if let Some(ref qualified_path) = self.current_qualified_path {
format!("{}.{}{}", qualified_path, name, suffix)
} else {
format!("{}{}", name, suffix)
}
}
fn mark_generator(&mut self) {
self.current_output().mark_generator();
}
}
fn get_doc(body: &[ast::Statement]) -> (&[ast::Statement], Option<String>) {
if let Some((val, body_rest)) = body.split_first() {
if let ast::StatementType::Expression { ref expression } = val.node {
if let ast::ExpressionType::String { value } = &expression.node {
if let Some(value) = try_get_constant_string(value) {
return (body_rest, Some(value));
}
}
}
}
(body, None)
}
fn try_get_constant_string(string: &ast::StringGroup) -> Option<String> {
fn get_constant_string_inner(out_string: &mut String, string: &ast::StringGroup) -> bool {
match string {
ast::StringGroup::Constant { value } => {
out_string.push_str(&value);
true
}
ast::StringGroup::Joined { values } => values
.iter()
.all(|value| get_constant_string_inner(out_string, value)),
ast::StringGroup::FormattedValue { .. } => false,
}
}
let mut out_string = String::new();
if get_constant_string_inner(&mut out_string, string) {
Some(out_string)
} else {
None
}
}
fn compile_location(location: &ast::Location) -> bytecode::Location {
bytecode::Location::new(location.row(), location.column())
}
fn compile_varargs(varargs: &ast::Varargs) -> bytecode::Varargs {
match varargs {
ast::Varargs::None => bytecode::Varargs::None,
ast::Varargs::Unnamed => bytecode::Varargs::Unnamed,
ast::Varargs::Named(param) => bytecode::Varargs::Named(param.arg.clone()),
}
}
fn compile_conversion_flag(conversion_flag: ast::ConversionFlag) -> bytecode::ConversionFlag {
match conversion_flag {
ast::ConversionFlag::Ascii => bytecode::ConversionFlag::Ascii,
ast::ConversionFlag::Repr => bytecode::ConversionFlag::Repr,
ast::ConversionFlag::Str => bytecode::ConversionFlag::Str,
}
}
#[cfg(test)]
mod tests {
use super::Compiler;
use crate::symboltable::make_symbol_table;
use rustpython_bytecode::bytecode::Constant::*;
use rustpython_bytecode::bytecode::Instruction::*;
use rustpython_bytecode::bytecode::{CodeObject, Label};
use rustpython_parser::parser;
fn compile_exec(source: &str) -> CodeObject {
let mut compiler: Compiler = Default::default();
compiler.source_path = Some("source_path".to_owned());
compiler.push_new_code_object("<module>".to_owned());
let ast = parser::parse_program(source).unwrap();
let symbol_scope = make_symbol_table(&ast).unwrap();
compiler.compile_program(&ast, symbol_scope).unwrap();
compiler.pop_code_object()
}
#[test]
fn test_if_ors() {
let code = compile_exec("if True or False or False:\n pass\n");
assert_eq!(
vec![
LoadConst {
value: Boolean { value: true }
},
JumpIfTrue {
target: Label::new(1)
},
LoadConst {
value: Boolean { value: false }
},
JumpIfTrue {
target: Label::new(1)
},
LoadConst {
value: Boolean { value: false }
},
JumpIfFalse {
target: Label::new(0)
},
LoadConst { value: None },
ReturnValue
],
code.instructions
);
}
#[test]
fn test_if_ands() {
let code = compile_exec("if True and False and False:\n pass\n");
assert_eq!(
vec![
LoadConst {
value: Boolean { value: true }
},
JumpIfFalse {
target: Label::new(0)
},
LoadConst {
value: Boolean { value: false }
},
JumpIfFalse {
target: Label::new(0)
},
LoadConst {
value: Boolean { value: false }
},
JumpIfFalse {
target: Label::new(0)
},
LoadConst { value: None },
ReturnValue
],
code.instructions
);
}
#[test]
fn test_if_mixed() {
let code = compile_exec("if (True and False) or (False and True):\n pass\n");
assert_eq!(
vec![
LoadConst {
value: Boolean { value: true }
},
JumpIfFalse {
target: Label::new(2)
},
LoadConst {
value: Boolean { value: false }
},
JumpIfTrue {
target: Label::new(1)
},
LoadConst {
value: Boolean { value: false }
},
JumpIfFalse {
target: Label::new(0)
},
LoadConst {
value: Boolean { value: true }
},
JumpIfFalse {
target: Label::new(0)
},
LoadConst { value: None },
ReturnValue
],
code.instructions
);
}
#[test]
fn test_constant_optimization() {
let code = compile_exec("1 + 2 + 3 + 4\n1.5 * 2.5");
assert_eq!(
code.instructions,
vec![
LoadConst {
value: Integer { value: 10.into() }
},
Pop,
LoadConst {
value: Float { value: 3.75 }
},
Pop,
LoadConst { value: None },
ReturnValue,
]
);
}
}