1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
use std::collections::HashMap;
use std::mem;
use std::ops::RangeInclusive;

use indexmap::IndexMap;
use result_like::impl_option_like;

use crate::exceptions::PyBaseExceptionRef;
use crate::obj::objtuple::PyTuple;
use crate::obj::objtype::{isinstance, PyClassRef};
use crate::pyobject::{
    IntoPyObject, PyObjectRef, PyRef, PyResult, PyValue, TryFromObject, TypeProtocol,
};
use crate::vm::VirtualMachine;

use self::OptionalArg::*;

/// The `PyFuncArgs` struct is one of the most used structs then creating
/// a rust function that can be called from python. It holds both positional
/// arguments, as well as keyword arguments passed to the function.
#[derive(Debug, Default, Clone)]
pub struct PyFuncArgs {
    pub args: Vec<PyObjectRef>,
    // sorted map, according to https://www.python.org/dev/peps/pep-0468/
    pub kwargs: IndexMap<String, PyObjectRef>,
}

/// Conversion from vector of python objects to function arguments.
impl From<Vec<PyObjectRef>> for PyFuncArgs {
    fn from(args: Vec<PyObjectRef>) -> Self {
        PyFuncArgs {
            args,
            kwargs: IndexMap::new(),
        }
    }
}

impl From<PyObjectRef> for PyFuncArgs {
    fn from(arg: PyObjectRef) -> Self {
        PyFuncArgs {
            args: vec![arg],
            kwargs: IndexMap::new(),
        }
    }
}

impl From<(&Args, &KwArgs)> for PyFuncArgs {
    fn from(arg: (&Args, &KwArgs)) -> Self {
        let Args(args) = arg.0;
        let KwArgs(kwargs) = arg.1;
        PyFuncArgs {
            args: args.clone(),
            kwargs: kwargs.iter().map(|(k, v)| (k.clone(), v.clone())).collect(),
        }
    }
}

impl FromArgs for PyFuncArgs {
    fn from_args(_vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
        Ok(mem::replace(args, Default::default()))
    }
}

impl PyFuncArgs {
    pub fn new(mut args: Vec<PyObjectRef>, kwarg_names: Vec<String>) -> PyFuncArgs {
        // last `kwarg_names.len()` elements of args in order of appearance in the call signature
        let kwarg_values = args.drain((args.len() - kwarg_names.len())..);

        let mut kwargs = IndexMap::new();
        for (name, value) in kwarg_names.iter().zip(kwarg_values) {
            kwargs.insert(name.clone(), value);
        }
        PyFuncArgs { args, kwargs }
    }

    pub fn insert(&self, item: PyObjectRef) -> PyFuncArgs {
        let mut args = PyFuncArgs {
            args: self.args.clone(),
            kwargs: self.kwargs.clone(),
        };
        args.args.insert(0, item);
        args
    }

    pub fn shift(&mut self) -> PyObjectRef {
        self.args.remove(0)
    }

    pub fn get_kwarg(&self, key: &str, default: PyObjectRef) -> PyObjectRef {
        self.kwargs
            .get(key)
            .cloned()
            .unwrap_or_else(|| default.clone())
    }

    pub fn get_optional_kwarg(&self, key: &str) -> Option<PyObjectRef> {
        self.kwargs.get(key).cloned()
    }

    pub fn get_optional_kwarg_with_type(
        &self,
        key: &str,
        ty: PyClassRef,
        vm: &VirtualMachine,
    ) -> PyResult<Option<PyObjectRef>> {
        match self.get_optional_kwarg(key) {
            Some(kwarg) => {
                if isinstance(&kwarg, &ty) {
                    Ok(Some(kwarg))
                } else {
                    let expected_ty_name = vm.to_pystr(&ty)?;
                    let actual_ty_name = vm.to_pystr(&kwarg.class())?;
                    Err(vm.new_type_error(format!(
                        "argument of type {} is required for named parameter `{}` (got: {})",
                        expected_ty_name, key, actual_ty_name
                    )))
                }
            }
            None => Ok(None),
        }
    }

    pub fn take_positional(&mut self) -> Option<PyObjectRef> {
        if self.args.is_empty() {
            None
        } else {
            Some(self.args.remove(0))
        }
    }

    pub fn take_positional_keyword(&mut self, name: &str) -> Option<PyObjectRef> {
        self.take_positional().or_else(|| self.take_keyword(name))
    }

    pub fn take_keyword(&mut self, name: &str) -> Option<PyObjectRef> {
        self.kwargs.swap_remove(name)
    }

    pub fn remaining_keywords<'a>(
        &'a mut self,
    ) -> impl Iterator<Item = (String, PyObjectRef)> + 'a {
        self.kwargs.drain(..)
    }

    /// Binds these arguments to their respective values.
    ///
    /// If there is an insufficient number of arguments, there are leftover
    /// arguments after performing the binding, or if an argument is not of
    /// the expected type, a TypeError is raised.
    ///
    /// If the given `FromArgs` includes any conversions, exceptions raised
    /// during the conversion will halt the binding and return the error.
    pub fn bind<T: FromArgs>(mut self, vm: &VirtualMachine) -> PyResult<T> {
        let given_args = self.args.len();
        let bound = match T::from_args(vm, &mut self) {
            Ok(args) => args,
            Err(ArgumentError::TooFewArgs) => {
                return Err(vm.new_type_error(format!(
                    "Expected at least {} arguments ({} given)",
                    T::arity().start(),
                    given_args,
                )));
            }
            Err(ArgumentError::TooManyArgs) => {
                return Err(vm.new_type_error(format!(
                    "Expected at most {} arguments ({} given)",
                    T::arity().end(),
                    given_args,
                )));
            }
            Err(ArgumentError::InvalidKeywordArgument(name)) => {
                return Err(vm.new_type_error(format!("{} is an invalid keyword argument", name)));
            }
            Err(ArgumentError::RequiredKeywordArgument(name)) => {
                return Err(vm.new_type_error(format!("Required keyqord only argument {}", name)));
            }
            Err(ArgumentError::Exception(ex)) => {
                return Err(ex);
            }
        };

        if !self.args.is_empty() {
            Err(vm.new_type_error(format!(
                "Expected at most {} arguments ({} given)",
                T::arity().end(),
                given_args,
            )))
        } else if !self.kwargs.is_empty() {
            Err(vm.new_type_error(format!(
                "Unexpected keyword argument {}",
                self.kwargs.keys().next().unwrap()
            )))
        } else {
            Ok(bound)
        }
    }
}

/// An error encountered while binding arguments to the parameters of a Python
/// function call.
pub enum ArgumentError {
    /// The call provided fewer positional arguments than the function requires.
    TooFewArgs,
    /// The call provided more positional arguments than the function accepts.
    TooManyArgs,
    /// The function doesn't accept a keyword argument with the given name.
    InvalidKeywordArgument(String),
    /// The function require a keyword argument with the given name, but one wasn't provided
    RequiredKeywordArgument(String),
    /// An exception was raised while binding arguments to the function
    /// parameters.
    Exception(PyBaseExceptionRef),
}

impl From<PyBaseExceptionRef> for ArgumentError {
    fn from(ex: PyBaseExceptionRef) -> Self {
        ArgumentError::Exception(ex)
    }
}

/// Implemented by any type that can be accepted as a parameter to a built-in
/// function.
///
pub trait FromArgs: Sized {
    /// The range of positional arguments permitted by the function signature.
    ///
    /// Returns an empty range if not applicable.
    fn arity() -> RangeInclusive<usize> {
        0..=0
    }

    /// Extracts this item from the next argument(s).
    fn from_args(vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError>;
}

/// A map of keyword arguments to their values.
///
/// A built-in function with a `KwArgs` parameter is analagous to a Python
/// function with `**kwargs`. All remaining keyword arguments are extracted
/// (and hence the function will permit an arbitrary number of them).
///
/// `KwArgs` optionally accepts a generic type parameter to allow type checks
/// or conversions of each argument.
///
/// Note:
///
/// KwArgs is only for functions that accept arbitrary keyword arguments. For
/// functions that accept only *specific* named arguments, a rust struct with
/// an appropriate FromArgs implementation must be created.
pub struct KwArgs<T = PyObjectRef>(HashMap<String, T>);

impl<T> KwArgs<T> {
    pub fn pop_kwarg(&mut self, name: &str) -> Option<T> {
        self.0.remove(name)
    }
}

impl<T> FromArgs for KwArgs<T>
where
    T: TryFromObject,
{
    fn from_args(vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
        let mut kwargs = HashMap::new();
        for (name, value) in args.remaining_keywords() {
            kwargs.insert(name, T::try_from_object(vm, value)?);
        }
        Ok(KwArgs(kwargs))
    }
}

impl<T> IntoIterator for KwArgs<T> {
    type Item = (String, T);
    type IntoIter = std::collections::hash_map::IntoIter<String, T>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

/// A list of positional argument values.
///
/// A built-in function with a `Args` parameter is analogous to a Python
/// function with `*args`. All remaining positional arguments are extracted
/// (and hence the function will permit an arbitrary number of them).
///
/// `Args` optionally accepts a generic type parameter to allow type checks
/// or conversions of each argument.
#[derive(Clone)]
pub struct Args<T = PyObjectRef>(Vec<T>);

impl<T> Args<T> {
    pub fn into_vec(self) -> Vec<T> {
        self.0
    }
}

impl<T: PyValue> Args<PyRef<T>> {
    pub fn into_tuple(self, vm: &VirtualMachine) -> PyObjectRef {
        vm.ctx
            .new_tuple(self.0.into_iter().map(PyRef::into_object).collect())
    }
}

impl<T> FromArgs for Args<T>
where
    T: TryFromObject,
{
    fn from_args(vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
        let mut varargs = Vec::new();
        while let Some(value) = args.take_positional() {
            varargs.push(T::try_from_object(vm, value)?);
        }
        Ok(Args(varargs))
    }
}

impl<T> IntoIterator for Args<T> {
    type Item = T;
    type IntoIter = std::vec::IntoIter<T>;

    fn into_iter(self) -> Self::IntoIter {
        self.0.into_iter()
    }
}

impl<T> FromArgs for T
where
    T: TryFromObject,
{
    fn arity() -> RangeInclusive<usize> {
        1..=1
    }

    fn from_args(vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
        if let Some(value) = args.take_positional() {
            Ok(T::try_from_object(vm, value)?)
        } else {
            Err(ArgumentError::TooFewArgs)
        }
    }
}

/// An argument that may or may not be provided by the caller.
///
/// This style of argument is not possible in pure Python.
#[derive(Debug, is_macro::Is)]
pub enum OptionalArg<T = PyObjectRef> {
    Present(T),
    Missing,
}

impl_option_like!(OptionalArg, Present, Missing);

pub type OptionalOption<T> = OptionalArg<Option<T>>;

impl<T> OptionalOption<T> {
    #[inline]
    pub fn flat_option(self) -> Option<T> {
        match self {
            Present(Some(value)) => Some(value),
            _ => None,
        }
    }
}

impl<T> FromArgs for OptionalArg<T>
where
    T: TryFromObject,
{
    fn arity() -> RangeInclusive<usize> {
        0..=1
    }

    fn from_args(vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
        if let Some(value) = args.take_positional() {
            Ok(Present(T::try_from_object(vm, value)?))
        } else {
            Ok(Missing)
        }
    }
}

// For functions that accept no arguments. Implemented explicitly instead of via
// macro below to avoid unused warnings.
impl FromArgs for () {
    fn from_args(_vm: &VirtualMachine, _args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
        Ok(())
    }
}

// A tuple of types that each implement `FromArgs` represents a sequence of
// arguments that can be bound and passed to a built-in function.
//
// Technically, a tuple can contain tuples, which can contain tuples, and so on,
// so this actually represents a tree of values to be bound from arguments, but
// in practice this is only used for the top-level parameters.
macro_rules! tuple_from_py_func_args {
    ($($T:ident),+) => {
        impl<$($T),+> FromArgs for ($($T,)+)
        where
            $($T: FromArgs),+
        {
            fn arity() -> RangeInclusive<usize> {
                let mut min = 0;
                let mut max = 0;
                $(
                    let (start, end) = $T::arity().into_inner();
                    min += start;
                    max += end;
                )+
                min..=max
            }

            fn from_args(vm: &VirtualMachine, args: &mut PyFuncArgs) -> Result<Self, ArgumentError> {
                Ok(($($T::from_args(vm, args)?,)+))
            }
        }
    };
}

// Implement `FromArgs` for up to 5-tuples, allowing built-in functions to bind
// up to 5 top-level parameters (note that `Args`, `KwArgs`, nested tuples, etc.
// count as 1, so this should actually be more than enough).
tuple_from_py_func_args!(A);
tuple_from_py_func_args!(A, B);
tuple_from_py_func_args!(A, B, C);
tuple_from_py_func_args!(A, B, C, D);
tuple_from_py_func_args!(A, B, C, D, E);
tuple_from_py_func_args!(A, B, C, D, E, F);

/// A built-in Python function.
pub type PyNativeFunc = Box<dyn Fn(&VirtualMachine, PyFuncArgs) -> PyResult + 'static>;

/// Implemented by types that are or can generate built-in functions.
///
/// For example, any function that:
///
/// - Accepts a sequence of types that implement `FromArgs`, followed by a
///   `&VirtualMachine`
/// - Returns some type that implements `IntoPyObject`
///
/// will generate a `PyNativeFunc` that performs the appropriate type and arity
/// checking, any requested conversions, and then if successful call the function
/// with the bound values.
///
/// A bare `PyNativeFunc` also implements this trait, allowing the above to be
/// done manually, for rare situations that don't fit into this model.
pub trait IntoPyNativeFunc<T, R, VM> {
    fn into_func(self) -> PyNativeFunc;
}

impl<F> IntoPyNativeFunc<PyFuncArgs, PyResult, VirtualMachine> for F
where
    F: Fn(&VirtualMachine, PyFuncArgs) -> PyResult + 'static,
{
    fn into_func(self) -> PyNativeFunc {
        Box::new(self)
    }
}

pub struct OwnedParam<T>(std::marker::PhantomData<T>);
pub struct RefParam<T>(std::marker::PhantomData<T>);

// This is the "magic" that allows rust functions of varying signatures to
// generate native python functions.
//
// Note that this could be done without a macro - it is simply to avoid repetition.
macro_rules! into_py_native_func_tuple {
    ($(($n:tt, $T:ident)),*) => {
        impl<F, $($T,)* R> IntoPyNativeFunc<($(OwnedParam<$T>,)*), R, VirtualMachine> for F
        where
            F: Fn($($T,)* &VirtualMachine) -> R + 'static,
            $($T: FromArgs,)*
            R: IntoPyObject,
        {
            fn into_func(self) -> PyNativeFunc {
                Box::new(move |vm, args| {
                    let ($($n,)*) = args.bind::<($($T,)*)>(vm)?;

                    (self)($($n,)* vm).into_pyobject(vm)
                })
            }
        }

        impl<F, S, $($T,)* R> IntoPyNativeFunc<(RefParam<S>, $(OwnedParam<$T>,)*), R, VirtualMachine> for F
        where
            F: Fn(&S, $($T,)* &VirtualMachine) -> R + 'static,
            S: PyValue,
            $($T: FromArgs,)*
            R: IntoPyObject,
        {
            fn into_func(self) -> PyNativeFunc {
                Box::new(move |vm, args| {
                    let (zelf, $($n,)*) = args.bind::<(PyRef<S>, $($T,)*)>(vm)?;

                    (self)(&zelf, $($n,)* vm).into_pyobject(vm)
                })
            }
        }

        impl<F, $($T,)* R> IntoPyNativeFunc<($(OwnedParam<$T>,)*), R, ()> for F
        where
            F: Fn($($T,)*) -> R + 'static,
            $($T: FromArgs,)*
            R: IntoPyObject,
        {
            fn into_func(self) -> PyNativeFunc {
                IntoPyNativeFunc::into_func(move |$($n,)* _vm: &VirtualMachine| (self)($($n,)*))
            }
        }

        impl<F, S, $($T,)* R> IntoPyNativeFunc<(RefParam<S>, $(OwnedParam<$T>,)*), R, ()> for F
        where
            F: Fn(&S, $($T,)*) -> R + 'static,
            S: PyValue,
            $($T: FromArgs,)*
            R: IntoPyObject,
        {
            fn into_func(self) -> PyNativeFunc {
                IntoPyNativeFunc::into_func(move |zelf: &S, $($n,)* _vm: &VirtualMachine| (self)(zelf, $($n,)*))
            }
        }
    };
}

into_py_native_func_tuple!();
into_py_native_func_tuple!((a, A));
into_py_native_func_tuple!((a, A), (b, B));
into_py_native_func_tuple!((a, A), (b, B), (c, C));
into_py_native_func_tuple!((a, A), (b, B), (c, C), (d, D));
into_py_native_func_tuple!((a, A), (b, B), (c, C), (d, D), (e, E));

/// Tests that the predicate is True on a single value, or if the value is a tuple a tuple, then
/// test that any of the values contained within the tuples satisfies the predicate. Type parameter
/// T specifies the type that is expected, if the input value is not of that type or a tuple of
/// values of that type, then a TypeError is raised.
pub fn single_or_tuple_any<T: PyValue, F: Fn(PyRef<T>) -> PyResult<bool>>(
    obj: PyObjectRef,
    predicate: F,
    message: fn(&PyObjectRef) -> String,
    vm: &VirtualMachine,
) -> PyResult<bool> {
    // TODO: figure out some way to have recursive calls without... this
    use std::marker::PhantomData;
    struct Checker<'vm, T: PyValue, F: Fn(PyRef<T>) -> PyResult<bool>> {
        predicate: F,
        message: fn(&PyObjectRef) -> String,
        vm: &'vm VirtualMachine,
        t: PhantomData<T>,
    }
    impl<T: PyValue, F: Fn(PyRef<T>) -> PyResult<bool>> Checker<'_, T, F> {
        fn check(&self, obj: PyObjectRef) -> PyResult<bool> {
            match_class!(match obj {
                obj @ T => (self.predicate)(obj),
                tuple @ PyTuple => {
                    for obj in tuple.as_slice().iter() {
                        if self.check(obj.clone())? {
                            return Ok(true);
                        }
                    }
                    Ok(false)
                }
                obj => Err(self.vm.new_type_error((self.message)(&obj))),
            })
        }
    }
    let checker = Checker {
        predicate,
        message,
        vm,
        t: PhantomData,
    };
    checker.check(obj)
}